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Abstract. The stationary state of the partially asymmetric simple exclusion process with open
boundaries is reconsidered. The so-called matrix product ansatz is employed. This enables us to
construct the stationary state in the form of the product of the matricesD andE. Noticing the fact
that the matrixC(= D+E) for the model is related to certainq-orthogonal polynomials, the model
is analysed for a wide range of parameters. The current and the correlation length are evaluated
in the thermodynamic limit. It turns out that the phase diagram for the correlation length is richer
than that for the totally asymmetric case.

1. Introduction

The stationary properties of one-dimensional lattice gases are currently of much research
interest [1]. The systems are known to show rich non-equilibrium behaviours. For instance,
they exhibit boundary-induced phase transitions [2], spontaneous symmetry breaking [3]
and phase separation [4, 5]. The one-dimensional asymmetric simple exclusion process
(ASEP) [6, 7] is one such system and has been studied extensively. The ASEP is defined
as follows: particles hop on a one-dimensional lattice with an exclusion rule that prevents
more than one particle occupying the same site. During the infinitesimal time interval dt ,
each particle jumps to the right nearest-neighbouring site with probabilitypR dt and to the left
nearest-neighbouring site with probabilitypLdt . If the chosen site is already occupied, the
jump is suppressed due to the exclusion rule. More than one particle cannot be on the same
site. The case where particles can hop only in one direction, i.e., the case where eitherpL = 0
or pR = 0 is called the ‘totally asymmetric’ case. Another extreme casepL = pR will be
called the ‘symmetric’ case in the sense that particles hop symmetrically to the right and left.
Lastly, the remaining case, where particles hop in both directions with different rates, will be
referred to as the ‘partially asymmetric’ case.

The stationary state of the ASEP depends on the boundary condition in an essential way.
The periodic boundary condition corresponds to the system on a ring. The stationary state
is rather trivial. All possible configurations have equal probability and the density profile is
flat. The ASEP with the reflective boundary condition was studied in [8]. The stationary state
is described by the representation theory of the quantum algebraUq [SU(2)]. The density
shows a shock-like profile. The most interesting is, however, the case where we employ open
boundary conditions. We allow the particle input at the left end of the chain with rateα and
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Figure 1. The one-dimensional asymmetric simple exclusion process with open boundaries.

allow the particle output at the right end of the chain with rateβ (figure 1). Here the length
of the chain is denoted byL. The model is then known to exhibit phase transitions depending
on the values of the parametersα andβ. For the totally asymmetric case, this fact was first
noticed in [2] by numerical simulations. It was then confirmed by exact calculation using the
recursion relation in [9–11].

The so-called matrix product ansatz was originally introduced in [12] to study a two-
dimensional directed animals. It was then applied to the ASEP in [13] to reproduce and
generalize the results in [9,10]. This enables us to construct the stationary state of the ASEP in
terms of two matrices, which satisfy certain algebraic relations. In [13], the method was applied
to the totally asymmetric case. Since then, techniques have been generalized and successfully
applied to many other interesting problems [14, 15] such as the calculations of the diffusion
constant [16–18], the formation of shocks [19–24], discrete time dynamics [25–31], reaction–
diffusion models [32], models with disorder [33] and multi-species cases [34–37]. These
applications have been mainly for the totally asymmetric case. There are several exact results
for the symmetric case [38] and for the partially asymmetric case as well [13,18,22,23,39–41].
However, the partially asymmetric case with the open boundary conditions has not been fully
exploited. Known facts are summarized as follows. First, an example of infinite-dimensional
representations of the algebraic relations was given in [13]. Second, the algebraic relation
was related to the so-calledq-boson in [40]. The current was calculated by employing some
plausible approximations. Third, there exist finite-dimensional representations for special
choices of the parameters [39, 41]. Then the current and the density profile are calculated
rather easily.

In this paper, the partially asymmetric case is considered for a wide range of parameters.
The restrictions on the parameters are 06 pL 6 pR andα, β > 0. We note that the process
has an obvious particle–hole symmetry. When we look at holes instead of particles, they tend
to hop to the left with ratepR and to the right with ratepL with hard-core exclusion. In
addition, they are injected at the right end with rateβ and removed at the left end with rateα.
In other words, the process is invariant under the changes,

particle↔ hole

α ↔ β

site numberj ↔ site numberL− j + 1.

(1.1)

Due to this symmetry, it is sufficient to consider the case whereα 6 β. To evaluate the physical
quantities, we use the fact that a matrix appearing in this problem is intimately related to the Al-
Salam–Chihara polynomials [42]. These polynomials are some of the so-calledq-orthogonal
polynomials and can be written in the form of basic hypergeometric series [43]. The Al-Salam–
Chihara polynomials are a special case of the Askey–Wilson polynomials, which were first
introduced in [44]. It should be noticed that the Askey–Wilson polynomials are the general
classical orthogonal polynomials which contain many important orthogonal polynomials as
special cases.
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The paper is organized as follows. In the next section, the construction of the stationary
state by means of the matrix product ansatz is briefly reviewed. In section 3, some notations
for theq-calculus are introduced. They are extensively used in the following discussions. In
section 4, theq-boson and theq-Hermite polynomials are introduced to study the algebraic
relations for the matrices. The special caseα = β = pR − pL is studied in section 5. The
current is represented in the form of the integral and is evaluated asymptotically by using the
steepest-descent method. For this special case, the explicit formula for finiteL is also found.
To obtain the results for more general case, the Al-Salam–Chihara polynomials are introduced
in section 6. In section 7, the current is evaluated in the thermodynamic limit. The phase
diagram for the current is recovered. In section 8, the correlation length is calculated. The
phase diagram for the correlation length is identified. It turns out to have a richer structure than
that for the totally asymmetric case. In section 9, some known special cases are discussed from
the viewpoint of the orthogonal polynomials. The last section is devoted to the concluding
remarks.

2. Matrix product ansatz

It is sometimes useful to formulate the stochastic processes in the language of quantum
mechanics [45]. This enables us to analyse many interesting processes by the techniques
originally devised for studying quantum mechanical systems. This is based on a simple
observation that time evolution for the stochastic systems can be described by the master
equation,

d

dt
P (t) = −HP(t) (2.1)

which is formally the same as the (imaginary-time) Schrödinger equation. HereH is a transition
rate matrix of the process andP(t) represents the probability distribution of the system. Though
the operatorH is in general non-Hermitian, it will be called a Hamiltonian hereafter.

The Hamiltonian for the ASEP with the open boundary condition has a form,

H = h1 +
L−1∑
j=1

hj,j+1 + hL. (2.2)

Here the matrixhj,j+1 (16 j 6 L−1) acts as a 4×4 matrixh on thej th and (j + 1)th spaces
and as an identity on the other spaces. The matrixh represents the asymmetric diffusion and
is explicitly given by

h =


0 0 0 0
0 pL −pR 0
0 −pL pR 0
0 0 0 0

 . (2.3)

On the other hand,h1 (resp.hL) acts non-trivially only on the 1st (resp.Lth) space and
corresponds to the particle input and output at the left (resp. right) end of the lattice:

h1 =
[
α 0
−α 0

]
hL =

[
0 −β
0 β

]
. (2.4)

Let us now briefly review the matrix product ansatz [13]. In the matrix product ansatz,
the stationary state of the ASEP is assumed to be of the form,

P = 〈W |
(
E

D

)
⊗ · · · ⊗

(
E

D

)
|V 〉/ZL (2.5)



7112 T Sasamoto

whereZL is the normalization constant given below. HereD andE are square matrices
acting in an auxiliary space. The auxiliary space is not specified at this stage. The dimension
of this space depends on the values of the parameters. There are both finite-dimensional
representations and infinite-dimensional representations. The matrix product ansatz is based
on a cancellation mechanism of the local interaction described by the matricesh, h1 andhL.
One can see that the stationary state conditionHP = 0 is solved if the matricesD,E and the
vectors〈W |, |V 〉 satisfy the following relations:

h

(
E

D

)
⊗
(
E

D

)
= ζ

{(
Ē

D̄

)
⊗
(
E

D

)
−
(
E

D

)
⊗
(
Ē

D̄

)}
(2.6a)

〈W |h1

(
E

D

)
= −ζ 〈W |

(
Ē

D̄

)
hL

(
E

D

)
|V 〉 = ζ

(
Ē

D̄

)
|V 〉 (2.6b)

whereD̄ andĒ are some square matrices andζ is an arbitrary number. In the case of ASEP,
we can setĒ = −D̄ = 1 and the relations are reduced to

pRDE − pLED = ζ(D +E) (2.7a)

α〈W |E = ζ 〈W | βD|V 〉 = ζ |V 〉. (2.7b)

Once one finds a representation of these algebraic relations, one can in principle calculate the
physical quantities such as the particle currentJL, the one-point function〈nj 〉L, the two-point
function 〈njnk〉L and the higher correlation functions. Here the subscriptL stands for the
lattice length. In the subsequent discussions, the matrixC defined by

C = D +E (2.8)

plays an important role. In terms of the matrixC, the normalizationZL is given by

ZL = 〈W |CL|V 〉. (2.9)

The one-point function〈nj 〉L is defined as the probability that the sitej is occupied. In
other words,〈nj 〉L is the average density at sitej . The two-point function〈njnk〉L is defined
as the probability that the sitesj and the sitek are both occupied. Higher-correlation functions
are defined similarly. They are computed by the formula,

〈nj 〉L = 〈W |Cj−1DCL−j |V 〉/ZL (2.10)

〈njnk〉L = 〈W |Cj−1DCk−j−1DCL−k|V 〉/ZL (2.11)

and so on. The current through the bond between sitej and sitej + 1 is defined by
J
(j)

L = pR〈nj (1− nj+1)〉 − pL〈nj (1− nj−1)〉. In the steady state, the current is independent
of j and hence is denoted byJL. In the matrix representation, it is given by

JL = ζ 〈W |C
L−1|V 〉

〈W |CL|V 〉 = ζ
ZL−1

ZL
. (2.12)

The totally asymmetric case was solved in [13] by using the above matrix formulation.
The current and the one-point function were computed. On the other hand, the exact results
for the partially asymmetric case are less known. For special values of the parameters,
the matrices have finite-dimensional representations and the physical quantities are readily
computable [39, 41]. However, for the other range of parameters, we have to employ an
infinite-dimensional representation. So far, when the matrices are infinite-dimensional, only
the current was computed with some approximations [40].
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3. Some notations forq-calculus

Before going to the main discussions, several notations for the so-calledq-calculus are
introduced [43,46]. They will be used extensively in the following sections. First we introduce
theq-number,

{n} = 1− qn (3.1)

and theq-factorial,

{n}! = {n}{n− 1} . . . {1} (3.2)

for n = 0, 1, 2, . . . . If we take appropriate limits, they reduce to the usual number and the
factorial as

lim
q→1

{n}
1− q = n lim

q→1

{n}!
(1− q)n = n!. (3.3)

Second, we define

(a; q)∞ =
∞∏
j=0

(1− aqj ) (3.4)

for |q| < 1. The infinite product in (3.4) converges when|q| < 1 for alla ∈ C. We also define
theq-shifted factorial,

(a; q)n = (a; q)∞
(aqn; q)∞

= (1− a)(1− aq)(1− aq2) . . . (1− aqn−1) (3.5a)

(a; q)0 = 1. (3.5b)

Here the condition|q| < 1 is unnecessary. If we seta to beqa and takeq → 1, it reduces to
the shifted factorial,

lim
q→1

(qa; q)n
(1− q)n =

n−1∏
j=0

(a + j). (3.6)

Since products ofq-shifted factorials appear so often, we use the notations,

(a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ . . . (ak; q)∞ (3.7)

(a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n . . . (ak; q)n. (3.8)

Lastly, the basic hypergeometric series (orq-hypergeometric series) is defined by the
series

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z
)
=
∞∑
n=0

(a1, a2, . . . , ar; q)n
(b1, b2, . . . , bs; q)n ((−)

nqn(n−1)/2)1+s−r zn

(q; q)n . (3.9)

It is assumed that the parametersb1, b2, . . . , bs are such that the denominator factors in the
terms of the series are never zero. When 0< |q| < 1, therφs series converges absolutely for
all z ∈ C if r 6 s and for|z| < 1 if r = s + 1. The basic hypergeometric series tends to the
usual hypergeometric series asq → 1.
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4. q-boson andq-Hermite polynomials

In [40], it was pointed out that the algebraic relation (2.7a) is related to the so-calledq-
boson [47–50]. Theq-boson is defined by the three relations among the three operatorsB,B†

andN ,

BB†− qB†B = 1− q (4.1a)

[N,B†] = B† [N,B] = −B. (4.1b)

Theq-boson appears in various physical situations. In the context of the stochastic processes,
it should be noted that there is an asymmetric diffusion process the Hamiltonian of which is
written in terms of theq-boson [51]. Just like the ordinary boson, theq-boson has the following
Fock representation:

B†|n〉 = {n + 1}1/2|n + 1〉 (4.2)

B|n〉 = {n}1/2|n− 1〉 (4.3)

N |n〉 = n|n〉. (4.4)

Here the Fock basis is denoted by|n〉 with n = 0, 1, 2, . . . . In addition, theq-boson has the
coherent state. It is called theq-coherent state and is defined by

|λ〉c =
∞∑
n=0

λn

{n}! (B
†)n|0〉 =

∞∑
n=0

λn

({n}!) 1
2

|n〉. (4.5)

It satisfies

B|λ〉c = λ|λ〉c c〈λ|B† = λ c〈λ|. (4.6)

To see the relationship between the algebraic relation (2.7a) and theq-boson, take
ζ = pR − pL and set

D = 1 +d E = 1 + e (4.7)

in (2.7a) and (2.7b). Here and hereafter we will assumepR 6= pL 6= 0 except in sections 9.2
and 9.3. Then we see that these relations become

de − qed = 1− q (4.8a)

〈W |e = a〈W | d|V 〉 = b|V 〉 (4.8b)

where we put

q = pL/pR (4.9)

a = 1− α̃
α̃

b = 1− β̃
β̃

(4.10)

with α̃ = α/(pR − pL), β̃ = β/(pR − pL). Since 0< pR < pL, α > 0 andβ > 0, we have
0 < q < 1, a > −1 andb > −1. As will become clear, the parametersa andb are more
fundamental than the original parametersα andβ. Now we see that relation (4.8a) is nothing
but one of the defining relations of theq-boson (see (4.1a)). Hence one can taked ande to be
the Fock representations of the operatorsB andB†, respectively. They are denoted byd1 and
e1. In matrix notation, they are explicitly given by

d1 =


0 {1} 1

2 0 0 . . .

0 0 {2} 1
2 0

0 0 0 {3} 1
2

...
. . .

. . .

 e1 =


0 0 0 0 . . .

{1} 1
2 0 0 0

0 {2} 1
2 0 0

0 0 {3} 1
2 0

...
. . .

. . .

 . (4.11)
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If we take this representation, relations (4.8b) show that the vector〈W | (resp.|V 〉) is the left
(resp. right) eigenvector of the operatore1 = B† (resp.d1 = B) with the eigenvaluea (resp.
b). Hence〈W | and|V 〉 can be taken as theq-coherent states (4.5). They are denoted by〈W1|
and|V1〉:

〈W1| = κ c〈a| |V1〉 = κ|b〉c (4.12)

with κ2 = (ab; q)∞. The normalizationκ is taken so that〈W |V 〉 = 1.
Next we define the matrix,

T1 = d1 + e1

=


0 {1} 1

2 0 0 · · ·
{1} 1

2 0 {2} 1
2 0

0 {2} 1
2 0 {3} 1

2

...
. . .

. . .
. . .

 . (4.13)

We notice that the matrixT1 is a real, symmetric tridiagonal matrix with positive off-diagonal
entries. Such matrices are called Jacobi matrices. They are known to be closely related to
the theory of orthogonal polynomials [52, 53]. In addition, the matrix (4.13) is bounded.
Associated with each bounded Jacobi matrixT , there exists a set of orthogonal polynomials
{pn(x)| n = 0, 1, 2, . . .} which are orthogonal with respect to a probability measure with
compact support. Defining|p(x)〉 = t (p0(x), p1(x), . . .), we require that the orthogonal
polynomials satisfy

T |p(x)〉 = 2x|p(x)〉 (4.14)

with the initial condition,

p−1(x) = 0 p0(x) = 1. (4.15)

In other words, the vector|p(x)〉 is formally an eigenvector of the Jacobi matrixT with the
eigenvalue 2x. It should be noted that equation (4.14) is equivalent to impose the three term
recurrence relation on{pn(x)}with initial condition (4.15). Fortunately, the weight function is
known for the Jacobi matrixT1 in (4.13). The three-term recurrence relation of the orthogonal
polynomials{pn(x)} for the Jacobi matrixT1 reads

{n}1/2pn−1(x) + {n + 1}1/2pn+1(x) = 2xpn(x). (4.16)

Setting

Pn(x) = ({n}!)1/2pn(x) =
√
(q; q)npn(x) (4.17)

the recurrence relation becomes

Pn+1(x) + (1− qn)Pn−1(x) = 2xPn(x). (4.18)

This is exactly the three-term recurrence relation of the continuousq-Hermite polynomials
{Hn(x|q)|n = 0, 1, 2, . . .}. Hence we havePn(x) = Hn(x|q). The continuousq-Hermite
polynomials were first introduced in [54] and have been studied extensively [55,56].

We list some properties of the polynomials which we will need in our calculations. See,
for instance, [53]. The continuousq-Hermite polynomials are explicitly given by the formula,

Hn(x|q) =
n∑
k=0

{n}!
{k}!{n− k}! ei(n−2k)θ (4.19)

with x = cosθ . The orthogonality relation of them reads∫ 1

−1
Hn(x|q)Hm(x|q)w(x)(1− x2)−1/2 dx = 2π

(q; q)n
(q; q)∞ δmn. (4.20)



7116 T Sasamoto

Here the weight functionw(x) is

w(x) =
∞∏
k=0

(1− 2(2x2 − 1)qk + q2k)

= (e2iθ , e−2iθ ; q)∞ (4.21)

where againx = cosθ . The generating function is also known and is given by
∞∑
n=0

Hn(cosθ |q)
{n}! λn = 1

(λeiθ , λe−iθ ; q)∞ (4.22)

for |λ| < 1. Finally, the completeness of the continuousq-Hermite polynomials can be written
as

1= (q; q)∞
2π

∫ π

0
dθ w(cosθ)|p(cosθ)〉〈p(cosθ)| (4.23)

where the functionw(x) is given by (4.21).

5. The caseα = β = pR − pL

In this section, the case wherea = b = 0 is considered. In terms of the original parameters,
this case corresponds to the caseα = β = pR − pL. This case is especially easy to analyse
because the vectors〈W1| and|V1〉 in (4.12) reduce to

〈W1| =c〈0| = 〈0| = (1, 0, 0, . . .) |V1〉 = |0〉c = |0〉 =


1
0
0
...

 . (5.1)

The simplicity of this special case was also noted in [39]. Now we represent the normalization
ZL for this case in the form of an integral. Since the vector|p(cosθ)〉 is an eigenvector of the
matrixT1 with eigenvalue 2 cosθ , one sees

CL1 |p(cosθ) = [2(1 + cosθ)]L|p(cosθ)〉 (5.2)

where we definedC1 = T1 + 2. Noticing

〈0|p(cosθ)〉 = 1 〈p(cosθ)|0〉 = 1 (5.3)

we calculate the normalizationZL as

ZL = 〈0|CL1 |0〉
= (q; q)∞

2π

∫ π

0
dθ w(cosθ)〈0|CL1 |p(cosθ)〉〈p(cosθ)|0〉

= (q; q)∞
2π

∫ π

0
dθ w(cosθ)[2(1 + cosθ)]L〈0|p(cosθ)〉〈p(cosθ)|0〉

= (q; q)∞
2π

∫ π

0
dθ w(cosθ)[2(1 + cosθ))]L (5.4)

where the functionw(x) is given by (4.21).
Using the steepest-descent method, we can evaluate this integral in the limitL→∞ as

follows. First we rewrite the functionw(x) as

w(cosθ) = 4 sin2 θf (cosθ) (5.5)
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with f (cosθ) = (qe2iθ , qe−2iθ ; q)∞. Making a change of variable,

e−u = 1 + cosθ

2
(5.6)

(5.4) is rewritten as

ZL = 2 · 4L+1(q; q)∞
π

∫ ∞
0

du e−uL−
3
2u
√

1− e−uf (2e−u − 1). (5.7)

Rescaling the variableu by v = uL, we have

ZL = 2 · 4L+1(q; q)∞
πL3/2

∫ ∞
0

dv v1/2e−ve−
3v
2L

(
1− e−v/L

v/L

)1/2

f (2−v/L − 1). (5.8)

Since the functionf (2−v/L − 1) is continuous and bounded, we can take the limitL→∞ in
the integrand in (5.8). Noticing

lim
L→∞

e−
3v
2L

(
1− e−v/L

v/L

)1/2

f (2−v/L − 1) = (q; q)2∞ (5.9)

we finally obtain

ZL ' (q; q)3∞4L+1

√
πL

3
2

. (5.10)

Let J denote the current in the thermodynamic limit, i.e.,J = limL→∞ JL. Using (2.12), the
current is easily computed asJ = (pR − pL)/4.

For thea = b = 0 case, the explicit formula ofZL can also be obtained for finiteL. We
use the formula,∫ π

0
e2ikθw(cosθ) dθ = π(−)k(q 1

2k(k+1) + q
1
2k(k−1))

(q; q)∞ . (5.11)

The proof of this formula can be found in [55]. Noticing a simple fact,

[2(1 + cosθ)]L =
2L∑
k=0

(
2L

k

)
ei(L−k)θ (5.12)

we obtain

Z2l = 1

2

2l∑
k=0

(−)l−k
(

4l

2k

)
[q

1
2 (l−k)(l−k−1) + q

1
2 (l−k)(l−k+1)] (5.13a)

Z2l+1 = 1

2

2l∑
k=0

(−)l−k
(

4l + 2

2k + 1

)
[q

1
2 (l−k)(l−k−1) + q

1
2 (l−k)(l−k+1)] (5.13b)

for l = 0, 1, 2, . . . . Here
(
m

n

) = m!/(n!(m − n)!) is the usual binomial coefficient. This
formula is exact for any finite lattice lengthL. However, the integral formula (5.4) seems more
appropriate to obtain the asymptotic behaviour of the quantity.

6. Al-Salam–Chihara polynomials

Next we consider the case wherea = b = 0 does not necessarily hold. The vectors〈W |, |V 〉
are now taken to be (4.12) instead of (5.1). For|a| < 1, |b| < 1, the formula (5.4) is generalized
by replacing (5.3) with

c〈a|p(cosθ)〉 = 1

(aeiθ , ae−iθ ; q)∞ 〈p(cosθ)|b〉c = 1

(beiθ , be−iθ ; q)∞ (6.1)
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which are simple consequences of (4.22). Hence we have

ZL = 〈W1|CL1 |V1〉
= κ2

c 〈a|(T1 + 2)L|b〉c
= (q; q)∞(ab; q)∞

2π

∫ π

0
dθ w(cosθ)[2(1 + cosθ)]L c〈a|p(cosθ)〉〈p(cosθ)|b〉c

= (q, ab; q)∞
2π

∫ π

0
dθ wa,b(cosθ)[2(1 + cosθ))]L (6.2)

where

wa,b(cosθ) = (e2iθ , e−2iθ ; q)∞
(aeiθ , ae−iθ , beiθ , be−iθ ; q)∞ . (6.3)

This is the generalization of the expression for the totally asymmetric case (see (B10) in [13]).
We can also consider the case where|a| < 1, |b| < 1 does not hold by using the analytic
continuation of the integral as explained in appendix B of [13] for the totally asymmetric case.

As far as only the normalizationZL is concerned, formula (6.2) together with the analytic
continuation is enough. To obtain more detailed information, however, it is better to introduce
another set of orthogonal polynomials, which are orthogonal with respect to the function
wa,b(cosθ) when|a| < 1 and|b| < 1. The polynomials are known as the Al-Salam–Chihara
polynomials [42,57]. They are represented inq-hypergeometric series as

Pn(a, b; x) = (ab; q)na−n 3φ2

(
q−n, aeiθ , ae−iθ

ab, 0
; q, q

)
(6.4)

wherex = cosθ . Since

(aeiθ , ae−iθ ; q)k =
k−1∏
j=0

(1− 2aqj cosθ + a2q2j ) (6.5)

it is clear thatPn(a, b; x) is a polynomial of degreen in x = cosθ . They are a special case of the
Askey–Wilson polynomials, which were introduced in [44]. The Askey–Wilson polynomials
contain four parameters other thanq. Al-Salam–Chihara polynomials correspond to setting
two parameters to zero. The Askey–Wilson polynomials have played an important role in
the theory of theq-orthogonal polynomials since they contain various importantq-orthogonal
polynomials such as theq-ultraspherical polynomials and theq-Jacobi polynomials as special
cases. In the following, several properties of the Al-Salam–Chihara polynomials are explained.
The proofs will not be provided because the properties of the Al-Salam–Chihara polynomials
below are obtained as special cases of the properties of the Askey–Wilson polynomials, for
which a standard reference is available [44].

The Al-Salam–Chihara polynomials (6.4) are known to satisfy the three-term recurrence
relation,

Pn+1(a, b; x) + (a + b)qnPn(a, b; x) + (1− qn)(1− abqn−1)Pn−1(a, b; x) = 2xPn(a, b; x)
(6.6)

with the initial conditionP−1(a, b; x) = 0 andP0(a, b; x) = 1. In section 4, it was pointed
out that a set of orthogonal polynomials is associated with a Jacobi matrix. So one may
wonder whether there is a matrix representation of the algebraic relations (2.7a) and (2.7b)
associated with the Al-Salam–Chihara polynomials. It turns out that the representation given
in appendix A of [13] is directly related to these polynomials. The matricesd, e and the
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vectors〈W |, |V 〉 corresponding to this representation will be denoted byd2, e2, 〈W2| and|V2〉.
Explicitly, they are given by

d2 =


b
√
c1 0 0 · · ·

0 bq
√
c2 0

0 0 bq2 √
c3

...
. . .

. . .

 e2 =


a 0 0 0 · · ·√
c1 aq 0 0
0
√
c2 aq3 0

0 0
√
c3 aq4

...
. . .

. . .

 (6.7a)

〈W2| = (1, 0, 0, . . .) |V2〉 =


1
0
0
...

 (6.7b)

where

cn = (1− qn)(1− abqn−1). (6.8)

As in section 4, we define the matrix,

T2 = d2 + e2

=


a + b

√
c1 0 0 . . .√

c1 (a + b)q
√
c2 0

0
√
c2 (a + b)q3 √

c3

0 0
√
c3 (a + b)q4 . . .

...
. . .

. . .

 . (6.9)

The matrixT2 is again a Jacobi matrix whenab < 1. Whenab > 1, some of thecn are
negative. Then the matrixT2 is not a Jacobi matrix. However, as we will see, this fact
does not cause any difficulty for our discussions. We can define orthogonal polynomials
|p(a, b; x)〉 = t (p0(a, b; x), p1(a, b; x), . . .) which satisfyT2|p(a, b; x)〉 = 2x|p(a, b; x)〉.
Setting

P̃n(a, b; x) = (c1c2 . . . cn)
1/2pn(a, b; x)

=
√
(q, ab; q)npn(a, b; x) (6.10)

the polynomialsP̃n(a, b; x) are shown to satisfy (6.6). Hence we haveP̃n(a, b; x) =
Pn(a, b; x). Actually, we could have started from the representation (4.11), (4.12) instead of
the representation (6.7a), (6.7b). Both representations lead to the same results. The advantage
of the representation (6.7a), (6.7b) is that the dependences of the physical quantities on the
parametersa, b can be discussed by only looking at the spectrum of the matrixT2.

Now we explain the orthogonality relation of the Al-Salam–Chihara polynomials and
the spectrum of the matrixT2. Though the orthogonality relation of the Al-Salam–Chihara
polynomials depends on the values ofa andb, it can be represented in a single expression in
the form of the contour integral as

1

2π i

∫
C

dz

z

(z2, z−2; q)∞Pn(a, b; (z + z−1)/2)Pm(a, b; (z + z−1)/2)

(az, a/z, bz, b/z; q)∞ = 2δm,nhn (6.11)

where

hn = (q, ab; q)n
(q, ab; q)∞ . (6.12)

In (6.11) the contourC is the unit circle traversed in the positive direction, but with suitable
deformations to separate the sequences of poles converging to zero from the sequences of poles
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Figure 2. An example of the contour in the integral (6.11). In this example, 0< b < a−1 < 1 <
a < b−1 is assumed. The sequences of poles atz = aqj (j = 0, 1, 2, . . .) converge to zero and
are indicated by filled circles. The sequences of poles atz = (aqj )−1 (j = 0, 1, 2, . . .) diverge
to infinity and are indicated by crosses. The sequences of poles atz = bqj and atz = (aqj )−1

(j = 0, 1, 2, . . .) are not indicated in this figure. The contour is such that it encircles only the
sequences of poles converging to zero.

diverging to infinity. In other words, the contour includes all poles of the typecqn and excludes
all poles of the type 1/(cqn) with c = a, b. An example of the contour is shown in figure 2.
Depicted is the case where 0< b < a−1 < 1< a < b−1 holds. In this orthogonality relation,
we assumeab 6= 1, q−1, q−2, . . . except in section 9.1. There, the conditionab = q−n+1 for
somen = 1, 2, . . . will be related to the existence of a finite-dimensional representation of
the algebraic relations (2.7a) and (2.7b). The proof of the orthogonality relation (6.11) with
(6.12) for the general case is highly non-trivial. An interested reader should consult [44].

For |a| < 1, |b| < 1, the contour is nothing but the unit circle and the orthogonality
relation for the polynomials is given by

1

2π

∫ π

0
dθ wa,b(cosθ)Pn(a, b; cosθ)Pm(a, b; cosθ) = δm,nhn. (6.13)

Here the weight functionwa,b(x) is (6.3). The orthogonality relation (6.13) means that the
spectrum of the matrixT2 for this case consists only of the continuous spectrum covering
[−2, 2]. Especially, the largest eigenvalue of the matrixT2 for this case is two. As a
mathematical statement, this sentence is not correct because the value two is not a discrete
eigenvalue but in the continuous spectrum. But we abuse the word ‘eigenvalue’ as in the
above sentence unless the meanings are unclear. The completeness of the Al-Salam–Chihara
polynomials for this case can be written as

1= (q, ab; q)∞
2π

∫ π

0
dθ wa,b(cosθ)|p(a, b; cosθ)〉〈p(a, b; cosθ)| (6.14)

where the functionwa,b(x) is given by (6.3).
Next we consider the case wherea > 1 and|b| < 1. Sincea > 1 and 0< q < 1, there

exists a non-negative integern such that

a > aq > · · · > aqn > 1> aqn+1 > · · · . (6.15)

The orthogonality relation for this case reads

1

2π

∫ π

0
dθ wa,b(cosθ)Pn(a, b; cosθ)Pm(a, b; cosθ)
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+
n∑
j=0

Pn(a, b; x(a)j )Pm(a, b; x(a)j )w
(a)
j = δm,nhn (6.16)

wherex(a)j = [aqj + (aqj )−1]/2 andw(a)j is given by

w
(a)
j =

(a−2; q)∞(a2, ab; q)j (1− a2q2j )

(q, ab, b/a; q)∞(q, aq/b; q)j (1− a2)qj
2
a3j bj

. (6.17)

Here the summation term in (6.16) comes from the contributions from the poles in the integrand
in (6.11) atz = aqj and z = (aqj )−1 for j = 0, 1, . . . , n. More precisely, one gets
the expression (6.17) by considering the residue at the poles of the integrand atz = aqj

and z = (aqj )−1. This expression is also obtained by taking an appropriate limit in the
corresponding expression for the Askey–Wilson polynomials [44]. Whenab > 1, w(a)j can
be negative. The positivity of the weight function is lost. This might be a great disadvantage
from the viewpoint of the theory of the orthogonal polynomials. However, this fact has no
importance for our discussions. The spectrum of the matrixT2 consists of the continuous one
covering [−2, 2] and the discrete one with the eigenvalues{2x(a)j |j = 0, 1, 2, . . . , n}. Notice
that all of the eigenvalues in the discrete spectrum are off [−2, 2]. Moreover, we can see that
x
(a)
0 > x

(a)
0 > · · · > x(a)n . Especially, the largest eigenvalue of the matrixT2 for this case is

2x(a)0 = a +a−1. Finally, the completeness of the Al-Salam–Chihara polynomials for this case
reads

1= (q, ab; q)∞
2π

∫ π

0
dθ wa,b(cosθ)|p(a, b; cosθ)〉〈p(a, b; cosθ)|

+
n∑
j=0

w
(a)
j |p(a, b; x(a)j )〉〈p(a, b; x(a)j )|. (6.18)

The case where|a| < 1 andb > 1 is essentially the same as the case wherea > 1
and |b| < 1 with the roles ofa and b interchanged. The spectrum of the matrixT2

consists of the continuous one covering [−2, 2] and the discrete one with the eigenvalues
{2x(b)j = bqj + (bqj )−1|j = 0, 1, 2, . . . , n}. It is also easy to guess the orthogonality relation

whena andb are both larger than one. Ifa > aq > · · · > aqn
(a)

> 1 > aqn
(a)+1 > · · ·

andb > bq > · · · > bqn
(b)

> 1 > bqn
(b)+1 > · · ·, there appear two summation terms of the

form
∑n(c)

j=0Pn(a, b; x(c)j )Pm(a, b; x(c)j )w(c)j with c = a, b in addition to the integral in (6.13).
The spectrum of the matrixT2 consists of the continuous one ranging [−2, 2] and two discrete
series of the eigenvalues{2x(a)j |j = 0, 1, 2, . . . , n(a)} and{2x(b)j |j = 0, 1, 2, . . . , n(b)}. The
largest eigenvalue of the matrixT2 depends on the values ofa andb. Whena (resp.b) is larger
thanb (resp.a), it is given bya + a−1 (resp.b + b−1).

7. Calculation ofZL and current

As for the orthogonality relation (6.11), the normalizationZL for general case is represented
as the contour integral:

ZL = (q, ab; q)∞
4π i

∫
C

dz

z

(z2, z−2; q)∞[(1 + z)(1 + z−1)]L

(az, a/z, bz, b/z; q)∞ . (7.1)

Here the contour is the same as for the orthogonality relation (6.11). Formula (7.1) is obtained
as the analytic continuation of (6.2). When|a| < 1 and|b| < 1, the contour is the unit circle
and (7.1) reduces to the integral expression in (6.2). Applying the steepest-descent method
as in section 5, we can get the asymptotic expression ofZL for this case. For the case where
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a > 1 and|b| < 1, there appear other contributions in addition to the integral. When (6.15)
holds,ZL is calculated as

ZL = (q, ab; q)∞
2π

∫ π

0
dθ wa,b(cosθ)[2(1 + cosθ))]L

+(q, ab; q)∞
n∑
j=1

[(1 +aqj )(1 + (aqj )−1)]Lw(a)j . (7.2)

It turns out that asL→∞ the contribution of thej = 0 term in the summation is dominant.
Hence the asymptotic expression forZL for this case is

ZL ' (a−2; q)∞
(b/a; q)∞ [(1 +a)(1 +a−1)]L. (7.3)

Other cases can be calculated similarly. Due to the particle–hole symmetry, it suffices
to know the cases wherea > b, or equivalently, the cases whereα̃ 6 β̃. The asymptotic
expressions forZL are summarized as follows:

• For α̃ > 1
2 andβ̃ > 1

2 (|a|, |b| < 1)

ZL ' (ab; q)∞(q; q)3∞4L+1

√
π(a, b; q)2∞L

3
2

. (7.4)

• For 1
2 < α̃ = β̃ (|a| = |b| < 1)

ZL ' (a2; q)∞(q; q)3∞4L+1

√
π(a; q)4∞L

3
2

. (7.5)

• For α̃ = 1
2 < β̃ (a = 1> |b|)

ZL ' 2 · 4L
√
π(b; q)∞L 1

2

. (7.6)

• For α̃ < 1
2 andα̃ < β̃ (a > 1, a > b)

ZL ' (a−2; q)∞
(b/a; q)∞ [(1 +a)(1 +a−1)]L. (7.7)

• For α̃ = β̃ < 1
2 (a = b > 1)

ZL ' (a − a−1)(a−2; q)∞L
(q; q)∞ [(1 +a)(1 +a−1)]L−1. (7.8)

These are the generalizations of the results for the totally asymmetric case (see (51)–(56)
in [13]).

Using formula (2.12), the current is readily calculated in the thermodynamic limit. The
expression for the current is different in three regions of the parameter space(α̃, β̃). The
results are:

• Case A (low-density phase;α̃ < 1
2 andβ̃ > α̃; a > 1 anda > b)

J = (pR − pL)α̃(1− α̃). (7.9)

• Case B (high-density phase;β̃ < 1
2 andα̃ > β̃; b > 1 anda < b)

J = (pR − pL)β̃(1− β̃). (7.10)
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Figure 3. The phase diagram of the current. Regions
A,B and C are called the low-density phase, the
high-density phase and the maximal current phase,
respectively.

Figure 4. The phase diagram of the correlation length
in the α–β plane for the totally asymmetric case. The
low-density phase (resp. high-density phase) is divided
into two phases,A1 andA2 (resp.B1 andB2) along the
line β = 1

2 (resp.α = 1
2).

• Case C (maximal current phase;α̃ > 1
2 andβ̃ > 1

2; |a|, |b| < 1)

J = pR − pL
4

. (7.11)

Hence the phase diagram for the current (figure 3) is recovered. It consists of three phases.
Following [9, 11] we refer to cases A, B and C as the low-density phase, the high-density
phase and the maximal current phase, respectively. This phase diagram for the current is
correctly predicted by the mean-field approximation [39] and was confirmed in [40] with some
approximations employed.

8. Correlation length

It is known that the density profile in different phases (A,B andC) have different appearances.
This fact is correctly predicted by the mean-field analysis [9,39]. In the low-density phase, the
density takes a constant valueα̃ in the bulk. It decays exponentially near one boundary and is
constant near the other. Similarly, in the high-density phase, the density is constant 1− β̃ in
the bulk and decays exponentially near one of the boundaries. In the maximal current phase,
it is constant in the bulk but it shows power-law decays near both the boundaries. Since the
average density is between zero and one, we assume 06 α̃, β̃ 6 1 (i.e.a, b > 0) hereafter.
When the density decays exponentially near the boundary as e−r/ξ with r the distance from
the boundary, we callξ the correlation length in the following.

For the totally asymmetric case (pR = 1, pL = 0), the density profile was exactly
calculated in [11, 13]. It turned out that, whereas the mean-field analysis predicts the bulk
density correctly, it fails to give the correct correlation lengths for the high- and low-density
phases. Actually, the low-density (resp. high-density) phase is divided into two phasesA1 and
A2 (resp.B1 andB2) along the curveβ = 1

2 (resp.α = 1
2). See figure 4. The correlation lengths

in phasesA1 andA2 are given byξ−1 = ln[β(1− β)/α(1− α)] andξ−1 = − ln 4α(1− α),
respectively. The correlation lengths in phaseB1 andB2 are obtained by replacingα by β in
the above expressions. It was also found that the density decays near the boundary in phases
A2 andB2 are not purely exponential but with algebraic corrections. Recently, this phase
diagram was discussed from the viewpoint of the domain wall dynamics [58].

Unfortunately, for the partially asymmetric case, it is difficult to calculate the density
profile exactly. However, it is possible to know the correlation lengths. From the calculation
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in section 7, we notice that the currentJ in the thermodynamic limit is given by the inverse
of the largest eigenvalue of the matrixC2 = T2 + 2 multiplied byζ = pR − pL. This fact
can be understood as follows. Suppose that the eigenvalues of the matrixC2 are labelled as
λ0 > λ1 > λ2 > · · · although this is not literally true due to the presence of the continuous
spectrum. Let|λ0〉, |λ1〉, |λ2〉, . . . denote the corresponding eigenvectors. Then, as you can
see from (2.9), the normalizationZL behaves as

ZL =
∑
j

λLj 〈W |λj 〉〈λj |V 〉

' λL0 〈W |λ0〉〈λ0|V 〉 (8.1)

whenL→∞. The expression (2.12) of the current leads us to the above fact. Likewise, the
correlation length is calculated as the logarithm of the ratio of the largest eigenvalue and the
second largest eigenvalue of the matrixC2. The quantity〈W |Cj−1DCL−j |V 〉 is calculated as

〈W |Cj−1DCL−j |V 〉 =
∑
k,l

λ
j−1
k λ

L−j
l 〈W |λk〉〈λk|D|λk〉〈λk|V 〉. (8.2)

Hence the one-point function〈nj 〉L is expected to behave as

〈nj 〉L ' 〈λ0|D|λ0〉
λ0

+
〈λ0|D|λ1〉〈λ1|V 〉

λ0〈λ0|V 〉
(
λ1

λ0

)L−j
+
〈W |λ1〉〈λ1|D|λ0〉

λ1〈W |λ0〉
(
λ1

λ0

)j
(8.3)

whenL → ∞. When we look at the density at the bulk part of the lattice, i.e., when the
site numberj is O(L), the second and the third terms are negligible since we have assumed
λ0 > λ1. The first term gives the average bulk density. Whenj = O(1), the second term
can be neglected but the third term gives the decay of the average density profile at the left
boundary. The inverse of the correlation lengthξ is seen to beξ−1 = ln(λ0/λ1). Similarly,
whenL − j = O(1), the third term can be neglected but the second term gives the density
decay at the right boundary. The inverse of the correlation lengthξ is againξ−1 = ln(λ0/λ1).

The spectrum of the matrixC2 is obtained from that of the matrixT2 by a simple shift.
Whena, b < 1, the spectrum of the matrixC2 consists only of the continuous one ranging
[0, 4]. Hence we cannot calculate the correlation length for this case. This is consistent
with the fact that the density decays algebraically and hence the correlation length is formally
infinite in the maximal current phase. Now we consider the low-density phase. The results for
the high-density phase can be obtained from the particle–hole symmetry. In the low-density
phase, the largest eigenvalue of the matrixC2 is (1 + a)(1 + a−1). The dependence of the
second largest eigenvalue on the parametersa, b andq is different for different regions of the
parameters. First we consider the case wherea > 1 andb < 1 and suppose that (6.15) holds.
Then the spectrum of the matrixC2 is specC2 = [0, 4] ∪ {λ(a)0 , . . . , λ(a)n }, where we defined

λ
(c)
j = 2(1 +x(c)j ) = (1 + cqj )(1 + (cqj )−1) (8.4)

with j = 0, 1, 2, . . . , n andc = a, b. Notice thatλ(a)0 > λ
(a)
1 > · · · > λ(a)n > 4.

• The caseaq < 1.
The discrete spectrum consists only of one eigenvalueλ

(a)
0 . Hence the second largest

eigenvalue is given by four.
• The caseaq > 1.

There are at least two eigenvalues in the discrete spectrum. All of them are larger than
four. Hence the second largest eigenvalue is given byλ

(a)
1 .

Next we consider the case wherea > b > 1. In this case, the spectrum of the matrixC2 is
specC2 = [0, 4] ∪ {λ(a)0 , . . . , λ

(a)

n(a)
} ∪ {λ(b)0 , . . . , λ

(b)

n(b)
}.
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Figure 5. The phase diagram of the correlation length in
thea–b plane for the partially asymmetric case.

Figure 6. The phase diagram of the correlation length
in the α̃–β̃ plane for the partially asymmetric case. The
low-density phase (resp. high-density phase) is divided
into three phases,A1, A2 andA3 (resp.B1, B2 andB3).

• The caseaq < 1.
The discrete spectrum consists only ofλ(a)0 andλ(b)0 . The second largest eigenvalue is
given byλ(b)0 .
• The caseaq > 1.

In this case, there are two candidates for the second largest eigenvalue. We have to compare
two eigenvalues,λ(b)0 andλ(a)1 . Whenb > aq (resp.b < aq), λ(b)0 is larger (resp. smaller)
thanλ(a)1 . In either case, the second largest eigenvalue is given by the larger one ofλ

(b)
0

andλ(a)1 .

Collecting the above results, we obtain the phase diagram for the correlation length in thea–b
plane (figure 5). The phase diagram in theα̃–β̃ plane is also depicted in figure 6. The inverse
of the correlation lengthξ for each phase is given by the following:

• For the phaseA1 (α̃ < β̃ < α̃/[(1− α̃)q + α̃] andβ̃ < 1
2; aq < b < a andb > 1 )

ξ−1 = ln
λ
(a)
0

λ
(b)
0

= ln
β̃(1− β̃)
α̃(1− α̃) . (8.5)

• For the phaseA2 (q/(1 +q) < α̃ < 1
2 andβ̃ > 1

2; 1< a < q−1 andb < 1)

ξ−1 = ln
λ
(a)
0

4
= − ln 4[α̃(1− α̃)]. (8.6)

• For the phaseA3 ( β̃ > α̃/[(1− α̃)q + α̃] andα̃ < q/(1 +q); a > q−1 andb < aq)

ξ−1 = ln
λ
(a)
0

λ
(a)
1

= ln
q

[α̃ + (1− α̃)q]2
. (8.7)

• For the phaseB1 (α̃q/[(1− α̃) + qα̃] < β̃ < α̃ andα̃ < 1
2; bq < a < b anda > 1)

ξ−1 = ln
λ
(b)
0

λ
(a)
0

= ln
α̃(1− α̃)
β̃(1− β̃) . (8.8)

• For the phaseB2 (q/(1 +q) < β̃ < 1
2 andα̃ > 1

2; a < 1 and 1< b < q−1)

ξ−1 = ln
λ
(b)
0

4
= − ln 4[β̃(1− β̃)]. (8.9)
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• For the phaseB3 (β̃ < α̃q/[1− α̃ + α̃q] andβ̃ < q/(1 +q); a < bq andb > q−1)

ξ−1 = ln
λ
(b)
0

λ
(b)
1

= ln
q

[β̃ + (1− β̃)q]2
. (8.10)

We can compare the phase diagram (figure 6) for the correlation length with that for
the totally asymmetric case (figure 4). It turns out that the phase diagram for the partially
asymmetric case is richer than that for the totally asymmetric case. The phasesA3 andB3

do not appear in the phase diagram for the totally asymmetric case. The appearance of these
phases is traced back to the fact that the discrete spectrum of the matrixC2 for the partially
asymmetric has a more complicated structure than that for the totally asymmetric case. Lastly,
we remark that the phase diagrams for the higher correlation functions might be yet richer due
to the contributions from the third largest eigenvalue, the fourth largest eigenvalue,. . . etc of
the matrixC2.

9. Some special cases

In this section, we consider several special cases. In the context of the ASEP, all cases to be
considered have already been solved. The current and the density profile have been computed
exactly. Hence we are mainly interested in what orthogonal polynomials appear for these
cases.

9.1. Theab = 1, q−1, q−2, . . . case

When we introduced the Al-Salam–Chihara polynomials in section 6, we assumedab 6=
1, q−1, q−2, . . . . In this section, we take

ab = q−n+1 (9.1)

for some fixedn = 1, 2, . . .. First we observe that, when (9.1) holds, then× n submatrices of
d2 ande2 in (6.7a) decouple from other elements of the matrices. In other words, we can take
a finite-dimensional representation of the algebraic relations (2.7a) and (2.7b). After a slight
change, we take ann-dimensional representation,

d(n) =



b c
(n)
1 0 0 . . .

0 bq c
(n)
2 0

0 0 bq2 c
(n)
3

...
. . .

. . .

. . . c
(n)
n−1

bqn−1



e(n) =



a 0 0 0 . . .

1 aq 0 0
0 1 aq3 0
0 0 1 aq4

...
. . .

. . .

1 aqn−1



(9.2a)

〈W(n)| = (1, 0, 0, ł, 0) |V (n)〉 =


1
0
0
...

0

 (9.2b)
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where

c
(n)
j = (1− qj )(1− qj−n) (9.3)

with j = 1, 2, . . . , n− 1. Then we define ann-dimensional matrixJ (n) as

J (n) = d(n) + e(n)

=



a + b c
(n)
1 0 0 . . .

1 (a + b)q c
(n)
2 0

0 1 (a + b)q3 c
(n)
3

0 0 1 (a + b)q4 . . .
...

. . .
. . . c

(n)
n−1

1 (a + b)qn−1


. (9.4)

Associated with this finite-dimensional matrix, there exist orthogonal polynomials
{P (n)j (x)|j = 0, 1, 2, . . . , n}. They satisfy the three-term recurrence relation (6.6) with

conditionsP (n)−1 (x) = P
(n)
n+1(x) = 0. After simple changes of variables and the parameters,

the polynomials are known as a special case of theq-Racah polynomials. Theq-Racah
polynomials were first introduced in [59]. The orthogonality relation for these polynomials
can be obtained from the orthogonal relation (6.11) for the Al-Salam–Chihara polynomials by
a limiting argument. It is written in the form of the finite summation.

Before closing this section, we remark that our representation in (9.2a), (9.2b) is related
to that in [41] by similarity transformation. Indeed, define ann× n matrixU = {ujk; j, k =
0, 1, 2, . . . , n− 1} by

ujk =


0 for j > k

1 for j = k
k∏
l=j

c
(n)
l+1

bqk(1− ql−k) for j < k.
(9.5)

If we introduce a new representation by

d̃ = U−1dU ẽ = U−1eU (9.6a)

〈W̃ (n)| = 〈W(n)|U |Ṽ (n)〉 = U−1|V (n)〉 (9.6b)

we get

d̃(n) =


b 0 0 . . .

0 bq 0
0 0 bq2

...
. . .

bqn−1



ẽ(n) =


b−1 0 0 . . .

1 (bq)−1 0
0 1 (bq2)−1

...
. . .

. . .

1 (bqn−1)−1


(9.7a)

〈W̃ (n)| = (1, u01, u02, . . . , u0,n−1) |Ṽ (n)〉 =


1
0
0
...

0

 . (9.7b)
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This representation is nothing but a special case of [41].

9.2. The totally asymmetric (q = 0) case

By settingpR = 1, pL = 0 and henceq = 0 in the preceding sections, we recover some of
the results for the totally asymmetric case [13]. The simplification comes from the fact that
the infinite product(a; q)∞ in (3.5a) reduces to 1− a. For instance, the orthogonality relation
reduces to

1

2π i

∫
C

dz

z

(z2, z−2; q)∞Pm(a, b; (z + z−1)/2)Pn(a, b; (z + z−1)/2)

(1− az)(1− az−1)(1− bz)(1− bz−1)
= δm,n 2

1− abδn0
. (9.8)

The corresponding orthogonal polynomials have been known in mathematics literature (see
references in [44]). Especially, whena = b = 0, the orthogonal polynomials reduce to
the Tchebycheff polynomials of the second kind. This can also be seen from the three term
recurrence relation. Whenq = 0, the three-term recurrence relation (4.18) for theq-Hermite
polynomials reduces to

Pn+1(x) + Pn−1(x) = 2xPn(x). (9.9)

This is nothing but the three-term recurrence relation for the Tchebycheff polynomials.

9.3. The symmetric (q = 1) case

In this section, we consider the symmetric case, that is, we take the limitq → 1. This case was
solved in [38]. Though particles hop to the right and to the left with equal probability in the
bulk, there exists a particle current due to the open boundary condition. Using the algebraic
relations of the matricesD andE, the current and the correlation functions were calculated.
The particle density profile is simply a linear slope. There are no phase transitions in this case.

If we employ the representation (6.7a), (6.7b), we can take the limitq → 1 forD2 = 1+d2

andE2 = 1 + e2. We have

D2 =


1
β

√
c1 0 0 . . .

0 1
β

+ 1
√
c2 0

0 0 1
β

+ 2
√
c3

...
. . .

. . .

 E2 =



1
α

0 0 0 . . .√
c1

1
α

+ 1 0 0
0

√
c2

1
α

+ 2 0

0 0
√
c3

. . .

...
. . .


(9.10a)

〈W2| = (1, 0, 0, . . .) |V2〉 =


1
0
0
...

 (9.10b)

where

cn = n
(
n +

1

α
+

1

β
− 1

)
. (9.11)

Settingγ = 1
α

+ 1
β
− 1, the matrix,

C2 = D2 +E2

=


γ + 1

√
c1 0 0 . . .√

c1 γ + 3
√
c2 0

0
√
c2 γ + 5

√
c3

...
. . .

. . .
. . .

 (9.12)



ASEP with open boundaries 7129

is a Jabobi matrix. Associated with this Jacobi matrix, there exist orthogonal polynomials
which satisfyC2|p(x)〉 = x|p(x)〉. Notice that this is slightly different from (4.14) by a factor
of two. We employ this convention only in this section for convenience.

These polynomials satisfy the three-term recurrence relation,√
n(n + γ )pn−1(x) + (γ + 2n + 1)pn(x) +

√
(n + 1)(n + γ + 1)pn+1(x) = xpn(x). (9.13)

Defining

pn(x) = (−)n
√

n!

(γ + 1)(γ + 2) . . . (γ + n)
L(γ )n (x) (9.14)

the polynomials are shown to satisfy

(n + 1)L(γ )n+1(x) + (x − γ − 2n− 1)L(γ )n (x) + (n + γ )L(γ )n−1(x) = 0. (9.15)

This is nothing but the three-term reccurence relation for the Laguerre polynomials. The
weight function of the Laguerre polynomials is given by

w(x) =
{

0 x < 0

xγe−x x > 0.
(9.16)

Using (9.16), we can computeZL as

ZL = 1

0(γ + 1)

∫ ∞
0

dx xL+γe−x

= (γ + 1)(γ + 2) . . . (γ +L). (9.17)

This is exactly the same as the expression in [38], as it should be.

10. Concluding remarks

In this paper, the stationary state of the partially ASEP with open boundaries has been
reconsidered. To construct the stationary state of the process, the so-called matrix product
ansatz has been employed. This enables us to reformulate the problem in terms of the two
matricesD,E and the two vectors〈W |, |V 〉 which satisfy the algebraic relations (2.7a) and
(2.7b). The relationship between the representations of these algebraic relations and theq-
orthogonal polynomials has been explained in detail. The key facts are that the orthogonal
polynomials associated with the Jacobi matrix (6.9) are the Al-Salam–Chihara polynomials
(6.4) and that the orthogonality relation of them are explicitly known (see (6.11)). The current
and the correlation length were computed in the thermodynamic limit. The phase diagram
for the correlation length was identified (figure 6). We have found that the phase diagram has
a richer structure than that for the totally asymmetric case. Calculations have been carried
out for a wide range of the parameters. Many previous known results have been recovered as
special cases.

There are several problems for which the same techniques are applicable. First of all, it
seems possible to generalize our discussions to the the case where there are the particle output
at the left boundary with rateγ and the particle input at the right boundary with rateδ. The
exact calculation of the density profile is also desirable. That would confirm the phase diagram
in figure 6. Besides, one defect particle problem [20] and the two-species problem in [3, 60]
can be generalized to the partially asymmetric case. The results about these problems will be
reported elsewhere.

From the technical point of view, it would be interesting to understand why the Al-Salam–
Chihara polynomials appear in this problem. This seems to be related to the integrability of
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the ASEP. The theory ofq-orthogonal polynomials are known to play an important role in the
theory of one-dimensional integrable systems. On the other hand, the matrix product ansatz
is also known to be closely related to several techniques in the theory of one-dimensional
integrable systems. For instance, the Bethe ansatz equation can be reproduced from the time-
dependent version of the matrix product ansatz [61,62]. The matrix product ansatz can give a
representation for the Zamolodchikov–Faddeev algebra [63]. However, we have not found a
clear understanding of the interrelationship among the matrix product ansatz, the integrability
of the model and the theory of theq-orthogonal polynomials.
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Stinchcombe R B and Scḧutz G M 1995Europhys. Lett.9 663
[62] Sasamoto T and Wadati M 1997J. Phys. Soc. Japan66279
[63] Sasamoto T and Wadati M 1997J. Phys. Soc. Japan662618


